Wonjun Lee

▮ +1 669-329-9871 | **☑** won5830@stanford.edu | **☆** wonjunlee.me/about.html | **☑** github.com/won5830 | **ଛ** won5830

Personal Profile_

A graduate student having an interest in the provision and utilization of a tool for the quantitative assessment of biological systems.

Education

Stanford University California, United States

Ph.D. in Mechanical Engineering

Sep 2023 -

• Graduate student of integrated Ph.D. program

Seoul National University (SNU)

Seoul, South Korea

B.S. in Mechanical Engineering

Mar 2016 - Feb 2023

- Cumulative GPA: 3.84/4.0 (Major: 3.86/4.0, Advanced: 4.0/4.0); **Summa cum laude**
- Two years of absence to fulfill military duty (Mar. 2018 Feb. 2020)

Bucheon High School Seoul, South Korea

High School Mar 2013 - Feb 2016

• 1st Best Graduate

Publications

- Machine learning-aided quantification of 3D angiogenic vasculature in multiculture microfluidic platform, Wonjun Lee*, Byoungkwon Yoon*, Jungseub Lee, Sangmin Jung, Noo Li Jeon, BioChip Journal (2023): 1-12.
- Reconstituting Fundamentals of Bacteria Mediated Cancer Therapy on a Chip, Wonjun Lee, Jiin Park, Dongil Kang, Seungbeum Suh, 2023 IEEE 36th International Conference on Micro Electro Mechanical Systems (MEMS), IEEE, 2023

Research Experience

Center for Healthcare Robotics, KIST

Seoul, South Korea

Research Intern

Mar 2021 - Feb 2022

Advised by Professor Seungbeum Suh

- **Project:** Variable Tumor Microenvironment-on-a-chip with Temporal Angiogenic Switching System by Diffusion Control
- Established a novel protocol to stabilize photopolymerized poly (ethylene) glycol diacrylate (PEGDA) microfluidic device for cell culture.
- Constructed a computationally automated diffusion switch system by controlling fluid inflow using a syringe pump and designed a low-pass filter system that can selectively filter lightweight molecules based on their diffusion coefficient.
- **Project:** Reconstituting Fundamentals of Bacteria Mediated Cancer Therapy on a Chip
- Designed a microfluidic device that leverages spontaneous capillary flow under hydrophilic conditions through rapid prototyping, allowing for selective patterning of hydrogels in specified regions and co-culture of two or more cell types.
- Demonstrated the effects of bacterial stimulation on tumor spheroid and corresponding pro-inflammatory response of macrophages experimentally, and therefore emulated the fundamental constituents of bacteria-colonized tumor-microenvironment *in vitro*.

Multiscale Biomedical Engineering Laboratory, SNU

Seoul, South Korea

Undergraduate Intern

Feb 2021 - present

Advised by Professor Noo Li Jeon

- Project: Machine learning-aided quantification of 3D angiogenic vasculature in multiculture microfluidic platform
- Developed a graph convolutional network consisting of edge convolution and cascaded attention module and improved the deep learning network's skeleton segmentation capacity.
- Proposed and implemented a point cloud base 3D analysis pipeline optimized for quantifying angiogenic vasculature in MV-IMPACT platform and achieved a 47.9% reduction of error over the conventional maximum intensity projection analysis method on average.

Award, Fellowships, & Grants

2016 Bucheon Jang-hak Foundation Scholarship (2-semesters), Bucheon Jang-hak Foundation	50% of tuition
Jul 2016 Merit-based Scholarship, Seoul National University	30% of tuition
Mar 2017 Merit-based Scholarship, Seoul National University	50% of tuition
Mar 2018 Merit-based Scholarship, Seoul National University	50% of tuition
Jul 2020 Merit-based Scholarship, Seoul National University	full-tuition

Jul 2020 Grand award in Mechanical Product Design Course Design Contest, Seoul National University

- Led a team of six and developed the ball classifier machine that can assort balls based on their weight, up to three different types.
- Took 1st place among 16 teams composed of 112 students.

Mar 2021 **SNU Development Fund Scholarship**, Sangjin Jang-hak Foundation 50% of tuition Sep 2023 **Enhancing Diversity in Graduate Education (EDGE) Fellowship**, Stanford University \$12,800

Work Experience & Extracurricular Activities

Current Legal Affairs Society CALI

Seoul National University

 Member
 Jul 2020 - Feb 2021

- Conducted case law analysis and discussed current affairs in legal interpretation related to it.
- Led science and technology-related sessions.

MEMS in Mechanical Engineering

Seoul National University

Peer Tutor Jul 2021 - Feb 2022

• Managed and advised modeling for 3D printing.

• Guided lab tour and explained fundamentals of different 3D printing methods and their application on research.

SNU Mentoring

SNU Social Responsibility

Mentor Jan 2020 - Jan 2021

• Mentored high school students in a one-on-one relationship with a monthly conversation on topics in science and mechanical engineering.

Republic of Korea Air Force (ROKAF)

Seoul, South Korea

Signal Intelligence Operator (SERGEANT, E-5)

Mar 2018 - Feb 2020

- Analyzed and interpreted the collected signal intelligence and reported vital information to the higher command.
- Excellence award in military occupational specialty education.

Skills

Language Python, MATLAB, Verilog, C/C++

Framework PyTorch, Tensorflow, OpenCV, Open3D, Pandas

3D CAD and Printing Tools SolidWorks, AutoCAD

Computational Simulation Tools COMSOL Multiphysics, Acusolve

Bio Experiment Cell culture & handling, Bacteria culture & handling, Confocal microscopy, ELISA, qPCR

Microfluidic Device Fabrication PEGDA Photopolymerization, 3D Printing, Laser cutting & engraving