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A plethora of in vitro models have been the focus of intense research to truly mimic the native
DOL:00.0000000000000¢ physiological system. Among them, organ-on-a-chip or microfluidic devices gave notable results in
reconstructing reproducible three-dimensional vascularized organ-specific microenvironments using
various approaches. However, because of the absence of effective quantification methodologies for
assessing the phenotypic variation of on-chip microvascular networks, these benefits have not yet
translated to "bench-to-bedside" deployment of microfluidic platforms. To this end, we introduce
a novel machine learning-assisted 3D analysis pipeline that is capable of extracting major assess-
ment parameters quantifying on-chip MVNs' phenotypic variation. Meso-skeletal depiction of the
microvasculature and skeleton segmentation via improved graph convolutional network allowed for
a more accurate structural analysis of the angiogenic network than any other approach. We show
that our method outperforms conventional projection base analysis by giving satisfactory concor-
dance with the manual investigation. Our experiment indicates that our method can offer a chance
to elucidate the essence of vessel physiology that otherwise would have been overlooked and help
establish reliable preclinical models for biopharmaceutical applications.

1 Introduction . . _ _ )
preclinical screening system, it has been the subject of intense

Microvascular networks (MVNs), working as a mediator between
localized tissues and the circulatory system, is universally cred-
ited for their pivotal role in different pathophysiological scenar-
ios. Ranging from oncologym to tissue regeneration, MVNs ac-
tively engage and interact with the microenvironment and reg-
ulate various physiological phenomena. Recognizing its signifi-
cance, several studies have been conducted to establish a platform
that can reconstitute complicated functions of the microvascular
environment in the human body. Along with in vivo platforms, in
vitro reconstruction of vascular tissues has advanced rapidly in re-
cent decades. And the advent of a microfluidic or organ-on-a-chip
platform enabled unprecedented sophistication of emulation by
allowing 3D co-culture of endothelial cells (ECs) and associated
stromal cells#©. Therefore, paving the way for a human-centric
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research.

Nevertheless, these advantages have not yet translated to
"bench-to-bedside" deployment of microfluidic platforms due to
the lack of effective quantification techniques for evaluating the
phenotypic variation of MVNs in 3D. Some exclusive features
of microfluidic system distinguish it from MVN investigation in
other in vivo or 2D in vitro platforms: 1) random lumenization
and root of angiogenesis trigger severe heterogeneity to overall
network architecture, 2) fuzzy, non-uniform staining may result
in highly noisy data with excessive speckles. Existing analytical
approaches are rendered ineffective as a result of these difficul-
ties. Their methods are primarily appropriate for generic vascu-
logenesis analysis, which is insufficient for on-chip angiogenesis
and frequently necessitates the use of additional complex appa-
ratus for the elaborate reconstruction of 3D MVNs, putting them
out of reach of some researchers”19, Work-around adopted by
academia was to analyze MVNs on the basis of 2D-slices or max-
imum intensity projection (MIP) images. However, considering
the 3D nature of vasculature, it is obvious that this strategy would
lead to erroneous results with a significant loss in meaningful
datal,

To this end, in this study, we propose a novel 3D anal-
ysis pipeline well suited for on-chip angiogenesis evaluation.
The MicroVascular Injection-Molded Plastic Array 3D Culture
(MV-IMPACT) platform, designed as an injection molded mass-
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Fig. 1 Representation of the work flow performed by proposed pipeline. Overall analysis is mostly automated to minimize individual bias and alleviate

user fatigue.

producible polystyrene (PS) device in a standardized 96-well
plate SBS format, was used to collect various angiogenesis data.
Utilization of geometrically modeled spontaneous capillary flow
allowed for reliable and repeatable liquid patterning, which
helped to produce uniform and high-quality data for a data-driven
approach.

After converting the obtained confocal captured data into point
cloud format, the 3D analysis of MVNs was carried out. Pipeline’s
workflow consists of image preprocessing, meso-skeleton extrac-
tion, skeleton segmentation, and instance segmentation (Fig. [I)).
Meso-skeleton composed of skeletal curves and sheets, gave an
elaborate summary of the original vascular network into skeleton
data while preserving the network’s major topological property.
Next, an improved graph convolutional network (GCN) algorithm
was implemented to segment the skeleton based on local geomet-
ric structure and neighborhood connectivity. Predicted segments
were partitioned at the instance level and used to obtain final
evaluation metrics. As a proof of concept, we show our method’s
superiority over the conventional MIP approach by comparing the
resultant parameter values of the lung fibroblasts (LFs) induced
angiogenesis dataset. Overall, our methodology is of generic im-
pact and easily transposable to more advanced microfluidic sys-
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tems or other vasculature analysis tasks. We envision that our
pipeline will aid future research on vascularized microphysiolog-
ical systems.

2 Materials and methods

2.1 Fabrication of MV-IMPACT

Polystyrene (PS) injection molding was performed at R&D Fac-
tory (Korea). The aluminum alloy mold core was processed by
machining and polishing. The clamping force at the time of injec-
tion was set to 130 ton with a maximum injection pressure of 55
bar, 15 s of cycle time, and a 220 °C nozzle temperature. Biocom-
patible and transparent substrate was bonded to injection-molded
PS body to complete the device.

2.2 Cell preparation

Human umbilical endothelial cells (HUVECs; Lonza, Switzerland)
were cultured in endothelial growth medium 2 (EGM-2; Lonza)
and used in experiments between passage 4-5. Lung fibroblasts
(LFs; Lonza) were cultured in fibroblast growth medium 2 (FGM-
2; Lonza) and passages 7 was used for experiments. Cells were
incubated at 37°C and 5% CO2 and grown to 70-80% confluency
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Fig. 2 Overview of our utilized meso-skeleton extraction. (A) Meso-skeleton extraction process of deep point consolidation. Given the input point
cloud, its surface representation is further consolidated with WLOP consolidation. Through joint optimization, meso-skeleton representing overall
network architecture is formed. (B) Qualitative comparison with the competitive skeletonization methods, i.e., AngioTool 12l medial axis thinning
of voxels1314 [, _medial skeleton®, kNN contraction skeleton®, and deep point consolidation (DPC)2Z. The color changed from light to dark
represents the height along the z-axis from high to low. Artifacts triggered by the root of angiogenesis and clusters of cell debris cause skeletal data
to fail to provide critical morphological features about the given angiogenic network. Scale bars, 100. um.

before chip loading. Cultured cells were dissociated using 0.25%
trypsin—-EDTA (HyClone, USA). Afterward, harvested cells were
resuspended in bovine fibrinogen solutions and the concentra-
tions were properly adjusted according to the experimental re-
quirements.

2.3 Hydrogel and cell patterning

Prior to loading, the surface of injection-molded PS chips was
hydrophilzed with plasma surface treatment at 70W for 3 min
(Femto Science, Korea). The following steps were taken to pat-
tern the cells in the chip: central channel was patterned with
1 uL of acellular bovine fibrinogen solution (final concentra-
tion 2.5mgmL~!; Sigma, USA) mixed with bovine thrombin (0.5
UmL~!, Sigma). After waiting 5 min for the gels to polymerize,
LFs (final concentration 6 x 10° mL~1) encapsulated fibrinogen,
thrombin mixture was patterned into the upper side channel and
similarly left to clot at room temperature for 5 min. HUVECs sus-
pension (final concentration 1 x 10°mL~!) was then introduced
to the contralateral channel. Patterned chips were tilted by 90 de-
grees and incubated for 30 min so that HUVECs can fully adhere
to fibrin gel surface. After that, EGM-2 was added to the reser-
voirs, and the chips were kept in an incubator. To not disturb the
gradient of paracrine factors, cell culture media was replenished
once after 2-3 days of co-culture. During this process, a fresh
medium was injected only into the upper reservoir for generation
of shear stress and interstitial flow5.

2.4 Immunostaining and data preprocessing

Tissues in the device were fixed using 4% (w/v) paraformalde-
hyde (Biosesang, Korea) in phosphate-buffered saline (Gibco) for
15 min, followed by permeabilization with a 20 min immersion
in 0.15% Triton X-100 (Sigma). The samples were then blocked
with 3% bovine serum albumin (Sigma) for 1 h. Endothelial cell
(EC)-specific staining was done with 488 fluorescein-labeled Ulex
Europaeus Agglutinin I (Vector, UK), which was prepared at a
1:1000 ratio of dye in BSA for 12 h at 4°C. The whole aforemen-
tioned process was conducted through media reservoirs of the
chip without disassembly.

2D slices of angiogenic networks were acquired every 2.175 um
using confocal microscopy (Nikon Ti2, Japan). Obtained images
were later stacked in the z-axis to reconstruct 3D voxelized vascu-
lar networks. Afterward, the 3D matrix was binarized via median-
thresholding and then converted to point cloud data based on
voxel size. Mean filter was used to remove the outliers among
this procedure.

2.5 Meso-skeleton extraction

To comprehensively describe angiogenic networks without any
loss of significant data, we adopt Wu et al.’s method to extract
meso-skeleton from the original point cloud data (Fig. ) 17,
Details of this skeleton extraction algorithm will be omitted for
brevity.

2.6 Skeleton segmentation

Extracted skeleton is segmented using graph convolutional net-
work. Here taking Dynamic Graph CNN12 (DGCNN) as a back-
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bone, we replace maxpooling operation with attention module.
Let 2 = {x; € R® }7:1 be a C dimensional point set with N points.
To capture each point’s local geometric structure, we construct a
directed graph ¢ = (¥/,&) composed of a finite set of vertices ¥
and edges & C ¥ x ¥ using k-nearest-neighbors (k-NN). Specif-
ically, for a target point x;, its neighborhood set is constructed
as A (x;) ={x € Z:|x—xill, < ||xi —X¢||, }, where x; is the k-th
nearest point from x;. Graph’s edge feature is then simply com-
puted in form of x; —x;, where x; € ./ (x;). Afterward, nonlinear
function hg : R€ x RE — R is applied to individual points, cou-
pled with edge features, to map feature vectors onto a higher
dimensional space:

X; =hg (Xj —Xi,Xi) € kac’”", XjeN (x;) (@D

Multilayer perceptron (MLP), consisting of 2D 1 x 1 convolutional
layer followed by a batch normalization layer®? and a leaky-ReLU
activation function?l, is adopted here as a nonlinear function.
Outputted features from MLP are then fed into our attention mod-
ules to aggregate features of k-NN.

Attentive pooling. Since max-pooling only focus on promi-
nent configurations while discarding details, attention pool-
ing is instead used to aggregate neighbor’s features#2, Atten-
tional weights of each channel is measured by the Squeeze-and-
Excitation block, so that the module can dynamically adapt to the
local distribution of the neighborhoods2324, Here, we simply de-
note our block as M.

o =My (X}) € RF¥Cor - x; € N (x;) 2

To retain sensitivity to salient feature and prevent information
oversaturation, attentional weights are normalized across all the
neighbors of a query point x;. Therefore, the final output of the
proposed module can be formulated as follows:

att _ exp(@i j)

X — TN gy e RCou €))]
jemn Lienwexp(ein)

1

where * represents the element-wise matrix multiplication
(Hadamard product).

Spherical feature aggregation. We observe that graph gener-
ated by skeleton data is highly homophilious. Therefore, feature
uniformity with respect to the point’s spatial neighbors should be
guaranteed. To this end, we predict the weights w; of the spatial
neighbors and aggregate spatial neighbors’ feature in a weighted
manner. Neighboring points are transformed from Cartesian to
spherical coordinates where query point is the origin. But with-
out kernel discretization, spherical coordinate values are directly
utilized with deviations to learn local geometric information. Af-
terward. attentional weights for each neighboring point are mea-
sured by MLP. However, instead of 2D convolutional layer, 1D
convolutional layer, which is shared even within every point, is
adopted to compute the attentional weights. In brief, weights can
be calculated as:

W; =My (1;,0;,0;,1; — 71,0, — 6,0, — §;) € R* )]

where r;,6;,¢; are radius, polar angle, and azimuth angle com-
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ponents of x;’s neighboring points and My is the applied MLP.
Output weights can be casted into N x k x C,,, matrix by tiling
along the channel dimension. After weight normalization, we ag-
gregate features of spatially nearest neighbor points into features
of a single point x;. Therefore, given the set of spatial neighbors’
features f; = {f,-l, ... f| € R&*Cow from x4, the final output of

the proposed module can be formulated as follows:

exp(w; ;)

Sfinal att
X =X + _—
' jemx Lielig exp(Wip)

1

+f] € RCw (5)

Network architecture. Constructed network’s configuration
is summarized in Fig. [4A. After spatial transformation, input
data goes through three consecutive modified EdgeConv layers.
Each modified EdgeConv layer is composed of two shared fully-
connected layers (64,64) followed by the previously described
modules. Graph is dynamically updated during this process and
a newly generated graph is passed on to the next layer. Infor-
mation from each modified EdgeConv layer is aggregated with a
shared fully-connected layer (1024). This multi-scale feature is
then concatenated with the outputs of previous layers using skip-
connections. Finally, pointwise features are transformed by three
shared fully-connected layers (256, 256, 128), and per-category
segmentation scores are computed. Through this network, the in-
put skeleton is segmented into five different parts: i.e., root, joint,
link, noise, and tip-cell.

Model training. LF-induced angiogenesis dataset from the MV-
IMPACT platform was used for training. This dataset contains
400 skeleton point clouds. Each point belongs to one of 5 cate-
gories—e.g. root, joint, link, noise, and tip cell. The ground truth
has been manually annotated and cross-checked by the authors of
this study. For model evaluation, we performed 5-fold cross vali-
dation with microaveraging. Our network was trained on a single
Nvidia RTX 3070 Ti GPU with stochastic gradient descent (SGD)
optimizer. We applied common augmentations on-the-fly in the
training session, including random azimuth rotation (up to 15°
degrees), random flipping, shuffling, and random Gaussian noise
perturbation. To handle severe class imbalance, the cross-entropy
loss was balanced with empirically optimized weight terms:

1 N T’
Z(0)= N Z Z Q;y;jlogp;; (6)
i=1j=1

2.7 Instance segmentation

The segmented skeleton is further clustered to construct a 3D
graph that encompasses the morphological information of the an-
giogenic network. Since individual joints and links are in the
shape of regional clusters, Density-Based Spatial Clustering of Ap-
plications with Noise (DBSCAN)22 is used for individualization.
After clustering, DBSCAN is once more utilized to determine the
connectivity between links and joints.

2.8 Pipeline evaluation

LF-induced angiogenesis dataset precluded from model training
was used for pipeline assessment. We first utilize our pipeline



to extract commonly used MVN assessment parameters, which
are total vessel length, average vessel length, number of bifur-
cations, number of angiogenic sprouts, average sprouting length,
average vessel tortuosity, and average branching depth of angio-
genic sprouts26?39, We then compare our results with the anal-
ysis results of the conventional MIP method. Here, we choose
AngioTool12 as a baseline by virtue of its prevalence and versa-
tility. In the case of evaluation metrics that are not supported by
vanilla Angiotool, values were derived through further computa-
tion based on the skeleton taken from Angiotool. Detailed infor-
mation about the modified version is provided in Supplementary
Material (Fig. S1t).

The accuracy of the vessel structural metrics was tested using
absolute error, which is defined as the closeness of a measured
value to a ground-truth. And measurements having a small ab-
solute error were regarded as being accurate. Defined absolute
error is formulated as follows:

Aij=Yij=Gij| ™

where Y; ;, and G; ; represents measured vessel structure metric
of i"" image from j"* method and the corresponding ground-truth
value obtained by manual analysis, respectively. In addition, fol-
lowing the variable transform from the Brown-Forsythe test of
variance, precision of each method was also taken into account
for evaluation which is formulated as follows:

Pi,j:‘Ei.,j_Ej} (8

where E; is the median of E; ; across images=°2,

2.9 Statistical analysis

Using Prism (GraphPad, USA), statistical comparisons of the val-
ues were obtained from an paired two-tailed Student’s t-test anal-
ysis, with the threshold for statistical significance set at *p < 0.05.
**p < 0.005; ***p < 0.0005; and ns (not significant). The stan-
dard error of the mean (SEM) is presented in error bars.

3 Results and discussion

3.1 Microfluidic model for angiogenesis data acquisition
MV-IMPACT is made up of a single PS body that houses the media
reservoir and microfluidic patterning geometries, attached with
polycarbonate (PC) film substrate (Fig. [3)). The designed well
consists of 3 microchannels that are disposed in parallel and par-
titioned by channel height. Working as a pathway of nutrition
and oxygen, the upper channel (UC) and lower channel (LC) are
directly exposed to the media chamber for cell feeding. With a
row pitch of 9mm and a column pitch of 4.5mm, the well inter-
val fully complies with that of commercial 384-well plates. As a
result of its standardized form factor compatibility, MV-IMPACT is
entirely adaptable with the vast majority of laboratory equipment,
ranging from microscopes to automated fluid dispensers.

The patterning principle for MV-IMPACT lies in spontaneous
capillary flow patterning (SCP) of droplets facilitated by air
plasma-induced hydrophilic surface modification?. Fluid move-
ment independent of external energy stabilizes and ensures re-
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Fig. 3 Angiogenesis data acquisition using HUVECs and LFs. (A) Pho-
tograph and conceptual image of MV-IMPACT chip. Through a stan-
dardized 384-well plate format, high-throughput and efficient assay of
angiogenesis were possible. (B) Configuration of the microfluidic device
for modeling angiogenesis into 3D ECM. (C) Representative confocal im-
age of the acquired dataset with a cross sectional view at white dashed
line showing 3D lumen structure of vasculature. Scale bars, 500 um.

producibility of experimental procedures. recent years, initiatives
to incorporate deep-learning into numerous disciplines have been
made, with varying degrees of success, particularly in biomed-
ical applications. This triumph was largely made possible by
the collection of enough data®?. Data-driven approach have en-
abled models to learn salient aspects without miscellaneous hand-
crafted features, enabling different tasks that were before thought
to be impossible®4. In light of this, our device offers the possibil-
ity for technical advancements that conventional soft lithographic
polydimethylsiloxane (PDMS) devices can not provide. Our plat-
form’s mass-productive, user-friendly, and dependable properties
will ease the data generation process and assure its quality, facili-
tating the subsequent learning step.

3.2 Meso-skeleton depiction of angiogenic network

The majority of vessel evaluation techniques use a completely
shrunk skeleton to depict MVNs in graph form21%335, The points
of the skeleton are categorized as branch or non-branch based on
the directionality degree of the local context in the case of point
clouds or neighborhood connectivity in the case of voxels, and are
then utilized for structural analysis. However, this type of binary
representation typically fails to encompass key topological infor-
mation about the angiogenic network (Fig. [2B). In particular,
the root of angiogenesis and clusters of cell debris trigger severe
shape distortion of the extracted skeleton. These issues are diffi-
cult to regulate or fix, complicating the analysis and contributing
to inconsistent outcomes.

To overcome these issues, we represent MVNs in the form of
meso-skeleton for analysis, which is close to the raw contrac-
tion form of input data, rather than a fully shrunk skeleton. Be-
cause initial raw contractions are unlikely to properly summa-
rize the original structure, most point cloud skeletonization algo-
rithms use their own methods to confirm branchpoint and imple-
ment corresponding additional contractions to confirm the form
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Fig. 4 Representation of the proposed network and comparison with other networks.

(A) The overall architecture of our proposed mode used for

skeleton segmentation. After EdgeConv, attention-pooling (green) and spherical feature aggregation (blue) modules are sequentially applied to weight
the key neighboring features based on the local geometric context. Taking N points as input, per point segmentation scores are obtained after fusing

global and local descriptors (yellow). Dropout layers with probability of 0.3 are used in the last MLPs.

(B) Visual comparison of samples from

angiogenesis dataset with different algorithms. Scale bars, 200 um. (C) The receiver operating characteristic (ROC) curve of the proposed network

for skeleton segmentation.

(D) Comparison of accuracy with different algorithms, showing that the proposed network produced the highest overall

accuracy among the algorithms tested after the same number of training epochs.

and function of the final skeleton from the initial raw contrac-
tion 15136137, However, while the overall structure of on-chip an-
giogenesis may be complicated, the individual segments are sim-
ple enough that the initial raw contraction can faithfully mirror
the original vascular structure. In this regard, the key concept
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here is to leave the decision to GCN without adding any addi-
tional algorithms or contractions to confirm the branch and other
functionalities of the initial raw contraction form. The approach
developed by Wu et al.1Z for meso-skeleton extraction was chosen
primarily because of its additional optimization methods that help
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evaluation metrics compared to the conventional MIP method. Bars indicate mean £SEM. *p < 0.05, **p < 0.005, and ***p < 0.0005 in the paired

two-tailed Student’s t-tests (N = 22 samples).

in uniform distribution of skeletal points and better preservation
of the original structure. Upon this method, link optimization
is only conducted on points with a directionality degree larger
than a predefined threshold, so that each link or branch of the
vasculature can have its own contraction behavior: alignment or
repulsion. As a result, the branch is represented as a local point
cluster, the link as skeletal curves, the root part as a large, contin-
uous skeletal sheet at the bottom, and the noise part as a random
speckle. Such a function-specific point distribution enables GCN,
as explained later, to segment the relevant skeleton based on the
local context of each point.

3.3 Network Optimization

Each point in extracted skeleton exists in an unstructured fash-
ion without explicit cues for part segmentation. The conventional
algorithms determine certain specified points from the original
raw contraction, or meso-skeleton, as branch points based on
their own algorithm while the remaining points are confirmed as
links by extra-shrinking for the final skeleton extractionT5/16138]
However, we found that the meso-skeleton already faithfully re-
flects the underlying structure of the angiogenic network, al-
lowing us to detect each skeleton point’s functioning immedi-
ately without further contraction. To precisely assess the angio-
genic structure, with the employment of a deep learning network,
each skeleton point was segmented into five functionalities: root,

link, joint, noise, and tip-cell. The functioning of the skeleton
which is to be predicted depends heavily on the local context of
each point. Therefore, DGCNN, which directly utilizes informa-
tion about neighborhood connectivity, was chosen as our baseline
model. In fact, neither PointNet3? nor PointNet + +@|, which con-
duct feature embedding solely on the coordinate values of each
point, produce satisfactory results (Fig. B, Fig. S21). On the
other hand, DGCNN performed somewhat better, thereby indi-
cating GCN’s superior ability to capture skeleton data’s geometric
context.

While the vanilla DGCNN performs rather well in terms of over-
all segmentation, it falls short in terms of tip cell recognition. To
address this issue, attention pooling was implemented, which in-
creased the tip cell detection capabilities (Fig. S3B1). Meanwhile,
the spherical feature aggregation module not only achieved spa-
tial uniformity of predicted functionality, but also enhanced tip
cell detection capabilities as well (Fig. S3At). In proposed ag-
gregation module, with contrast to low-level features, high-level
features tend to aggregate in regard to a certain direction, i.e., the
orientation of angiogenesis (Fig. S3CT). A typical tip cell skeleton
point has link points in the root direction and noise or meaning-
less points in the top direction. In light of these structural traits,
it can be seen that having biased attention to root direction in-
creased tip cell detection sensitivity by acquiring more meaning
information for tip cell identification.

In conclusion, it can be observed that our modules, which
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achieved the highest overall accuracy when compared to other
models, function synergetically with GCN to execute skeleton seg-
mentation (Fig. [4D). The capacity of such a network aids in a
more thorough structural analysis of the specific angiogenic net-
work.

3.4 Pipeline Evaluation

Each skeleton’s 2400 point patches were retrieved and subjected
to segmentation network for evaluation. The original skeleton
was then recomposed and final 3D graph was obtained by using
a DBSCAN algorithm and a post-processing step. When the ac-
curacy of overall evaluation metrics was examined, our method
had lower mean absolute error than that of MIP method (68.3%
reduction) (Fig. [5). In the case of number of angiogenic sprouts,
it can be observed that the difference is not so significant because
tip cells in a 3D angiogenic network are seldom covered by other
regions since they reside at the end of the network. When the
precision of overall assessment metrics was tested in the same
way, our technique exhibited a lower mean random error (47.9%
reduction) than the MIP method.

The proposed method was further evaluated with the Bland-
Altman analysis (Fig. S47). Taking ground truth as a gold stan-
dard, the new technique’s acceptability and appropriateness can
be inferred by the visual inspection of error distribution#42,
Even though in the absence of absolute criteria regarding what
magnitude should the range of the agreement interval must be in
for establishing consensus, the results are still able to yield some
insight into how well these measurements work relative to each
other®?, As a result, it was established that our analytical strategy
provided results that were superior than MIP for almost all assess-
ment criteria and resulted in data that was almost bias-free.

MIP method’s erroneous results mainly ascribe to two reasons.
One is that bulk parts of the projection image would inevitably
be thinned to generate redundant skeleton fragments, leading to
a distorted representation of the MVNs. Especially, the root of
angiogenesis and different filtering processes for denoising have
exacerbated such errors and inaccuracies. The other is that image
projection poses a huge obstruction to computational interroga-
tion of individual components. For instance, overlayed links gen-
erated spurious nodes and shortened respective lengths of ves-
sels. Considering the global trend toward the complication of
the microfluidic platforms and reconstructed vessel networks, it
is obvious that such blunders will potentially hinder getting the
correct information in the future study. 3D assessment of MVNs
can settle this issue to some degree. The previous voxel-based
technique, for example, Imaris (Bitplane Scientific Software), has
demonstrated considerable success in this respect, but its perfor-
mance in the field of on-chip MVN analysis remains disappoint-
ing. Their data representation is computationally heavy and frag-
ile to background noises. Besides, morphological closing to fill
gaps in regions of capillaries must be preceded for skeleton ex-
traction, which requires laborious human intervention or prior
knowledge of vascular diameter1943l

By doing much of the analysis directly in the 3D point cloud
domain, our work-around bypasses many of these difficulties. Ex-
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perimental results indicate the suggested method’s promising ca-
pability to extract features directly in the 3D point clouds with
substantial accuracy even comparable to manual measurement.
Its geometrically accurate representation of individual functional
parts would be of great value in quantifying phenotypic variation
and further diversifying oversimplified current approaches for on-
chip MVN evaluation. To our best knowledge, this is the first work
to apply the deep learning framework to analyze 3D MVNs in an
organ-on-a-chip platform. In this respect, we anticipate that the
present work might offer some fresh perspectives on vessel image
processing issues, and potentially also several advantages over
existing techniques.

4  Conclusions

In this paper, we have developed a machine learning-assisted
method for the evaluation and quantification of angiogenesis’
morphological features on the MV-IMPACT platform. The key idea
is to summarize MVN into meso-skeleton which enables an accu-
rate depiction of the original architecture, and then segment the
skeleton into different functional components using GCN. With
the guidance of designed modules, our network could effectively
capture geometrical context and finely delineate the border of
individual parts. Experiment results indicate that our proposed
method outperforms the conventional MIP method in all seven as-
sessment criteria, making it more accurate and precise in quanti-
fying phenotypic variation. Our methodology, tailored for on-chip
microvasculature, provides a robust framework for logically an-
alyzing 3D angiogenesis datasets. We believe that the principles
developed within this work can be applied to many other organ-
on-a-chip platforms with varying design shapes and biochemical
milieu.

Data Availability

The codes used for skeleton segmentation and network evalua-
tion are available herel
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